Evaluating Word Embeddings for Sentence Boundary Detection in Speech Transcripts

نویسندگان

  • Marcos Vinícius Treviso
  • Christopher Shulby
  • Sandra M. Aluísio
چکیده

This paper is motivated by the automation of neuropsychological tests involving discourse analysis in the retellings of narratives by patients with potential cognitive impairment. In this scenario the task of sentence boundary detection in speech transcripts is important as discourse analysis involves the application of Natural Language Processing tools, such as taggers and parsers, which depend on the sentence as a processing unit. Our aim in this paper is to verify which embedding induction method works best for the sentence boundary detection task, specifically whether it be those which were proposed to capture semantic, syntactic or morphological similarities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentence Segmentation in Narrative Transcripts from Neuropsycological Tests using Recurrent Convolutional Neural Networks

Automated discourse analysis tools based on Natural Language Processing (NLP) aiming at the diagnosis of languageimpairing dementias generally extract several textual metrics of narrative transcripts. However, the absence of sentence boundary segmentation in the transcripts prevents the direct application of NLP methods which rely on these marks to function properly, such as taggers and parsers...

متن کامل

Sentence Segmentation in Narrative Transcripts from Neuropsychological Tests using Recurrent Convolutional Neural Networks

Automated discourse analysis tools based on Natural Language Processing (NLP) aiming at the diagnosis of languageimpairing dementias generally extract several textual metrics of narrative transcripts. However, the absence of sentence boundary segmentation in the transcripts prevents the direct application of NLP methods which rely on these marks to function properly, such as taggers and parsers...

متن کامل

Sentence Boundary Detection for French with Subword-Level Information Vectors and Convolutional Neural Networks

In this work we tackle the problem of sentence boundary detection applied to French as a binary classification task (”sentence boundary” or ”not sentence boundary”). We combine convolutional neural networks with subword-level information vectors, which are word embedding representations learned from Wikipedia that take advantage of the words morphology; so each word is represented as a bag of t...

متن کامل

A deep neural network approach for sentence boundary detection in broadcast news

This paper presents a deep neural network (DNN) approach to sentence boundary detection in broadcast news. We extract prosodic and lexical features at each inter-word position in the transcripts and learn a sequential classifier to label these positions as either boundary or non-boundary. This work is realized by a hybrid DNN-CRF (conditional random field) architecture. The DNN accepts prosodic...

متن کامل

Improving Automatic Sentence Boundary Detection with Confusion Networks

We extend existing methods for automatic sentence boundary detection by leveraging multiple recognizer hypotheses in order to provide robustness to speech recognition errors. For each hypothesized word sequence, an HMM is used to estimate the posterior probability of a sentence boundary at each word boundary. The hypotheses are combined using confusion networks to determine the overall most lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017